is then partially converted to the tetrakis(pyridine)platinum(II) salt upon continual refluxing in the presence of excess pyridine.

Analysis of the crude products and extraction procedures with methylene chloride indicated an approximate mole ratio of 2 moles of platinum-olefin complex to 1 mole of cycloheptatrienylium compound were formed when cycloheptatriene reacted with platinum-(IV) bromide, bromoplatinic acid, or chloroplatinic acid. The equations below represent the stoichiometry of these reactions.

 $4C_7H_8 + 3PtBr_4 \longrightarrow (C_7H_7)_2PtBr_6 + 2C_7H_8PtBr_2 + 2HBr$

 $4C_{7}H_{8} + 3H_{2}PtX_{6} \longrightarrow (C_{7}H_{7})_{2}PtX_{6} + 2C_{7}H_{8}PtX_{2} + 8HX$

The reactions of cycloheptatriene with the platinum-(IV) compounds in boiling acetic acid occur rapidly, and the product isolated about 1 min. after addition of the olefin did not differ materially in composition or quantity from a similar product separated 3 hr. after the addition of the olefin to a solution of the platinum(IV) compound.

Although a clear insight into the mechanism of the reaction between platinum(IV) and 1,3,5-cycloheptatriene is not possible from our limited study of the system, it appears that the initial step involves the abstraction of hydride ion from the olefin and the concomitant reduction of platinum from a +4 to a +2 oxidation state. The subsequent coordination of the platinous ion to the olefin and the simultaneous formation of the cycloheptatrienylium compound occur with extreme rapidity.

Recently Chatt and Guy reported¹⁹ an unsuccessful

attempt to prepare a triphenylcyclopropenium ion derivative in which this ion was bonded covalently to platinum. In view of the known ability of cycloheptatriene to undergo protonation²⁰ and hydride ion abstraction reactions²¹ while coordinated in certain metal carbonyl complexes, similar reactions were examined as possible methods for obtaining carbonium ion species attached to platinum.

The reaction of dichloro(cycloheptatriene)platinum-(II) with tritylium tetrafluoroborate generated *in* $situ^{22}$ or in a dichloromethane medium²³ did not produce the desired cycloheptatrienylium ion species via hydride ion abstraction, but instead a nearly quantitative recovery of starting material was realized. The attempted protonation of dichloro(cycloheptatriene)platinum(II) with tetrafluoroboric acid in an acetic anhydride medium also yielded starting material upon purification of the reaction mixture.

In summary, neither the present investigation nor previous reports has yielded any evidence for carbonium species bonded in a coordinate fashion to a platinum atom.

Acknowledgment.—We wish to acknowledge the support of the Army Research Office (Durham), Grant DA-ARO(D)-31-124-G26.

(19) J. Chatt and R. G. Guy, Chem. Ind. (London), 212 (1963).

(20) (a) H. J. Dauben and D. J. Bertelli, J. Am. Chem. Soc., 83, 497
(1961); (b) R. Burton, L. Pratt, and G. Wilkinson, J. Chem. Soc., 594
(1961).

(21) H. J. Dauben and L. R. Honnen, J. Am. Chem. Soc., 80, 5570 (1958).

(22) H. J. Dauben, L. R. Honnen, and K. M. Harmon, J. Org. Chem., 25, 1442 (1960).

(23) J. E. Mahler, D. H. Gibson, and R. Pettit, J. Am. Chem. Soc., 85, 3959 (1963).

CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, THE STATE UNIVERSITY OF IOWA, IOWA CITY, IOWA

Metal–Olefin Compounds. VI. The Crystal Structure of Catena-µ-chloro-(cyclooctatetraene)copper(I)

BY N. C. BAENZIGER, G. F. RICHARDS, AND J. R. DOYLE

Received A pril 27, 1964

A single crystal, three-dimensional X-ray study of catena- μ -chloro-(cyclooctatetraene)copper(I) has been carried out. The structure consists of continuous chains formed by the copper and chlorine atoms extending through the crystal in the *a* direction with one olefinic bond closely bound to each copper atom. The carbon atoms of the bonded olefinic group are approximately coplanar with the copper and adjacent chlorine atoms of the chain, and the coordination about the copper(I) may be described as a distorted trigonal arrangement. The bond distances and the bond angles associated with the closely bound atoms are: Cu-Cl, 2.288 \pm 0.002 Å.; Cl-Cu-Cl, 106.4 \pm 0.1°; Cl-Cu-(C₁-C₂ center), 123.1 \pm 0.2°, 130.1 \pm 0.2°; Cu-C₁, 2.073 \pm 0.010 Å.; Cu-C₂, 2.097 \pm 0.007 Å. A variety of weighting schemes was used in the least-squares data refinement procedures to test the sensitivity of the resulting interatomic distances to the weighting scheme and thus provide a test for systematic errors.

Introduction

By means of a new method of preparation of copper-(I)-olefin compounds,¹ a number of well-crystallized

(1) H. L. Haight, J. R. Doyle, N. C. Baenziger, and G. F. Richards, Inorg. Chem., 2, 1301 (1963).

complexes have recently become available for structural studies. A preliminary report has been made on the structure of one of these compounds, di- μ -chloro-bis-(1,5-cyclooctadiene)dicopper(I),² in which the co-(2) J. H. van den Hende and W. C. Baird, J. Am. Chem. Soc., 85, 1009 (1963).

ordination about each copper atom was found to be approximately tetrahedral. The structure of the 1:1 complex formed between cyclooctatetraene and copper(I) chloride, which is reported below, is different, since the coordination about copper is triangular.

Experimental

Crystals.—The crystals of C₈H₈CuCl were prepared by previously described procedures,¹ and two crystals were used in acquiring the data. Crystal number one was ground to a near perfect cylinder, 0.2 mm. in diameter by 0.5 mm. long ($\mu = 65/\text{cm.}$; $\mu R = 0.65$). The second crystal was rectangular, 0.25 \times 0.125 \times 0.5 mm. (on equivalent volume basis, $\mu R = 0.78$). The crystals were coated with a clear plastic coating to retard decomposition.

X-Ray Data .---- All data were obtained using the multiple film (three films) equi-inclination Weissenberg technique at 80°K. (Cu $K\alpha$ radiation) by means of a specially designed cryostat.³ The first crystal was used to record (0kl) to (3kl); the second crystal was used to obtain (h0l) to (h6l). Three-hour exposure times were adequate to obtain excellent diffraction patterns over the full angular scattering range. The intensities were estimated visually by comparison with calibrated intensity strips made from the crystals at room temperature. Intensity estimates from duplicate reflections, multiple films, and by independent estimators resulted in as many as a dozen observations for each reflection. The standard deviation in the mean value of these estimates was used as an estimate of s(I) later used in the weighting scheme in the least-squares refinement. Independent scale factors for each layer were used until the refinement had converged to an R value of 0.12, after which duplicate reflection intensities were averaged. At a later stage in the refinement a common scale was adopted for all reflections. Absorption corrections were made by a computer program combined with the Lorentz and polarization corrections. Reciprocals of the absorption correction values of Bond⁴ were fit to a simple polynomial function in $\sin^2 \theta$ for given values of μR .

The orthorhombic unit cell dimensions are: at room temperature, $a = 6.858 \pm 0.010$ Å., $b = 12.107 \pm 0.001$ Å., $c = 18.040 \pm 0.004$ Å.; at 80°K., $a = 6.806 \pm 0.0009$ Å., $b = 11.920 \pm 0.0008$ Å., $c = 17.925 \pm 0.002$ Å. All the cell dimensions, except a at room temperature, were obtained from back-reflection Weissenberg photographs using an analytical extrapolation technique to eliminate systematic errors. The calculated density for eight formula weights of C₈H₈CuCl at room temperature is 1.802 g./ cm.³; the observed value is 1.763 g./cm.³. Systematic absences, (0kl) if k is odd, (h0l) if l is odd, and (hk0) if h is odd, lead to the unique space group, Pbca.

Determination of Structure

Copper and chlorine positions were determined from a three-dimensional Patterson. These positions corresponded to an infinite polymer chain of -Cu-Clwhich extended along the *a* axis. Using the positions of these two atoms alone, an *R* value of 0.32 was obtained from all the data. A three-dimensional electron density map was then evaluated using 925 out of 1089 observable amplitudes. This map, in addition to the chlorine and copper peaks, contained many peaks which might correspond to carbon atoms. Peaks were selected which would correspond to a model of the structure in which the cyclooctatetraene was coordinated to the Cu atom in a roughly tetrahedral orientation. Carbon atoms were added to the calculation one at a time. If the addition of the carbon atom made the agreement worse or on a few least-squares cycles the associated temperature factor became large, the atom was discarded. Based on a number of carbon positions so located, a tetrahedral model was constructed and the remainder of the carbon positions determined from the model. With all the carbon atoms included, the agreement became worse; in fact, the more nearly the model approached the tetrahedral configuration, the poorer the agreement became. The attempt to fit a tetrahedral model was then dropped, and likely carbon atom positions, based on the appearance of peaks in the electron density map, were selected with no attempt at keeping the cyclooctatetraene molecule in a tetrahedral orientation about the copper atom. The arrangement included several of the carbon positions which had been found previously to improve the intensity agreement but did not correspond to the tetrahedral model. A few cycles of least-squares refinement using (0kl)data and coupled with the information from the electron density map gave an R value of 0.07 for this zone of data. The remaining x coordinates were then determined by fitting to a model of the cyclooctatetraene molecule, and the least-squares refinement based on all the data was begun. The R value at this stage was 0.15.

Least-Squares Refinement.—The initial least-squares refinement was performed using a program written for an LGP-30 computer. This program used unit weights, individual isotropic temperature parameters, the diagonal approximation, and independent scale factors for each layer of data. The program minimized $\Sigma ||F_{o}| - |F_{c}||^{2}$. Successive iterations with this program reduced the discrepancy value, R, to 0.11. Further refinement was done with a different leastsquares program written for an IBM 7070 computer. This program allows a wide variety of weighting schemes, individual or anisotropic temperature factors, and inverts the full least-squares matrix. Atom scattering factors are found by interpolation from the values listed in the International Tables of Crystallography, Vol. 3. The real part of the dispersion correction was made for the Cu and Cl atoms. The program minimizes $\Sigma w ||F_0^2| - |F_c^2||^2$. Reflections common to different layers were averaged and all data were put on a common scale before refinement with this program. Only an over-all scale constant was then allowed to vary. Different weighting schemes were used to test the sensitivity of the resulting interatomic distances to the weights used, thus providing a test for systematic errors. If errors are purely random, the parameters should be independent of the weighting scheme although the estimates of the errors in the parameters should not be. The weighting schemes used were: unit weights, minimizing $\Sigma(\Delta F)^2$; unit weights, minimizing $\Sigma(\Delta F^2)^2$; $w = I_{\text{max}}^2/16I^2$ for I greater than $I_{\rm max}/4$, and $w = 16I^2/I_{\rm max}^2$ for values of I less than $I_{\max}/4$; $w = 1/s^2(I)$, where $s^2(I)$ had been obtained from the agreement of intensity estimates. After

⁽³⁾ G. F. Richards, Ph.D. Dissertation, University of Iowa, Feb., 1964.
(4) W. L. Bond, "International Tables for Crystallography," Vol. 2, Kynoch Press, Birmingham, England, 1959.

	Bond dist.,	Std. dev. in bond dist.,
Bond	Å.	Å.
Cu-Cl	2.288	0.002
	2.284	0.002
$C_1 - C_2$	1.392	0.013
$C_2 - C_3$	1.441	0.012
$C_3 - C_4$	1.378	0.012
$C_4 - C_5$	1.504	0.012
$C_6 - C_6$	1.325	0.012
C6C7	1.493	0.011
$C_7 - C_8$	1.373	0.011
$C_8 - C_1$	1.463	0.013
Cu–C ₁	2.073	0.010
Cu–C ₂	2.097	0.007
Cu−C ₈	2.978	
Cu–C ₄	3.239	
Cu-C ₅	2.755	
Cu-C ₆	2.775	
Cu-C7	3.241	
Cu-C ₈	2.993	

weights inversely proportional to the standard deviations of the means of the intensity estimates gave the lowest error terms for the parameters. Parameters and estimates of errors obtained from this weighting scheme are given in Table II. The calculated and observed structure factors based on these parameters are given in Table III.

Discussion of the Structure

The coordination about the Cu atom is shown in Fig. 1, and the packing arrangement in the unit cell is shown by projection onto (100) in Fig. 2. (The atom parameters on which the following discussion is based are given in Table II. Table IV gives pertinent angles and equations of planes based on this same set of parameters.) The Cu and Cl atoms form continuous chains running through the crystal in the *a* direction. The Cl-Cu-Cl angle in the chain is 106°. Only one of the double bonds in cyclooctatetraene ($C_1==C_2$) is closely

Table II Atomic Parameters (Å.)

	x	У	5						
	s(x) s(X)	s(y) s(Y)	s(z) s(Z)	B11 s(B11)	$B_{22} \\ s(B_{22})$	B33 s (B33)	B12 s(B12)	B13 s(B13)	B28 s(B28)
Cu	0.1830	0.0771	0.2083	0.00518	0.00133	0.00041	0.00008	-0.00010	0.00042
	0.0002	0.0001	Q.00006	0.00025	0.00007	0.00003	0.00023	0.00018	0.00008
	0.0013	0.0012	0.0011						
C1	0.8898	0.9834	0.2130	0.00452	0.00142	0.00054	0.00004	0.00020	-0.00038
	0.0003	0.00014	0.00011	0.00037	0.00011	0.00005	0.00035	0.00023	0.00013
	0.0020	0.0017	0.0019						
C,	0.1240	0.2154	0.1419	1,49ª					
-1	0.0016	0.0008	0.0005	0.16					
	0.011	0.010	0.010						
C.	0.3063	0.2306	0.1756	0.46					
-2	0.0012	0.0006	0.0004	0.12					
	0.008	0.007	0.007	•••==					
	0.000	01001	01001			x	~	2	Б
с.	0 4038	0.2188	0 1391	0 79	H.	0,000	0.218	0 173	1_00
C_3	0.4008	0.0007	0.0005	0.13	H.	0.300	0.210	0.235	1 00
	0.0014	0.008	0.0000	0.10	H.	0.520	0.240	0.200	1.00
C.	0.5638	0.008	0.008	0.80	и.	0.650	0.230	0.100	1.00
C4	0.0013	0.0007	0.0005	0.13	н.	0.000	0.110	0.150	1.00
	0.0010	0.0001	0.0000	0.10	н.	0.262	0.010	0.100	1.00
C	0.009	0.008	0.008	0.70	116 11.	0.202	0.928	0.034	1.00
C8	0.0014	0.0103	0.1001	0.10	и.	0.087	0.009	0.978	1.00
	0.0014	0.0007	0.0004	0.15	118	0.900	0.230	0.038	1.00
Ċ	0.009	0.003	0.008	0.60					
C ₆	0.2785	0.0042	0.0000	0.09					
	0.0012	0.0000	0.000+	0.15					
C	0.008	0.0051	0.008	0.75					
C7 -	0.1001	0.0951	0.0280	0.75					
	0.0013	0.0000	0.0004	0.13					
C	0.009	0.007	0.000	0.05					
C_8	0.0907	0.1898	0.0028	0.95					
	0.0012	0.0007	0.0000	0.14					
_	0.008	0.008	0.009						
ª In	A. ² .								

a 7040 computer with a 32,768-word memory replaced the 7070 computer, anisotropic parameters for all atoms were refined and H atoms included at fixed positions. The final *R* obtained was 0.10. The bond lengths from these parameters are listed in Table I.

The interatomic distances obtained using the different weighting schemes did not differ significantly from one another. The weighting scheme with bound to the Cu atom, and the atoms of this double bond lie in the same plane as the Cu and adjacent Cl atoms of the chain. The coordination about the Cu atoms may be described as a distorted trigonal planar one, since the remaining angles in the plane between the Cu–Cl vectors and the vector from Cu to the midpoint of the associated double bond are 123 and 130° .

$Table \ III \\ Calculated and Observed Structure Factors for \ C_{\$}H_{\$}CuCl^{\alpha}$

<u>1</u> 000000000000000000000000000000000000	E 100 1100 128- 9704 774 1825 7704 777 7877 1828- 9704 100 1828- 9704 100 1828- 1829- 1828- 1829- 1828- 1829	P. 0 1 149 924 924 924 924 924 924 924 9	b) 111111111111111111111111111111111111	E. 00 92 1150-0 130-1-1-0 130-1-	E a sai 229 5ai 229 5ai 250 5a	1 1 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{c} E_0 \\ 0 \\ 0 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1$	E 176 57 122 0333 1227 22 0333 1227 22 0333 1227 22 0333 1227 22 04 05 05 05 05 05 05 05 05 05 05	n 222222222222222222222222222222222222	E 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	P_08259 9719379 9719379 9719379 9719379 9719379 9719310 9719310 9719310 9719310 9719310 9719310 9719310 9719310 97110 9710 9710 9710 9710 9710 9710 9	11 22222222222222222222222222222222222	E 80	p, 0720 78000535 4 0 20076 40276 701 2010 200 200 200 200 200 200 200 200
о ч ч на 13 0 0 ч ч на 14 13 14 15 5 # 0 0 0 ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч	427 427 428 405	370 443 415 15 10 20 20 20 20 20 20 20 20 20 20 20 20 20	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	711- 711- 842- 8401- 900- 933- 933- 930- 135- 339- 135- 339- 135- 339- 135- 339- 135- 339- 135- 135- 135- 135- 135- 135- 135- 135	771 889 999 4 18 231 20 30 182 233 182 233 182 233 182 233 182 233 182 233 182 233 182 233 182 333 182 334 117 355 825 1825 1825 1825 1825 1825 1825 182	$ \begin{array}{c} 1 & 10 & 2 & . \\ 1 & 10 & 4 & . \\ 1 & 10 & 4 & . \\ 1 & 10 & 6 & \textbf{x} \\ 1 & 10 & 6 & \textbf{x} \\ 1 & 10 & 6 & \textbf{x} \\ 1 & 10 & 10 & . \\ 1 & 10 & . \\ 1 & . \\ 1 & $	$\begin{array}{c} 183-\\ 285-\\ 280-\\ 555-\\ 159-\\ 355-\\ 159-\\ 355-\\ 149-\\ 149-\\ 124\\ 97\\ 333\\ 5277\\ 4485\\ 4100-\\ 4100-\\ 1200-\\ 100-\\ 10$	167 336 746 125 125 125 125 125 125 125 125 125 125	22222222222222222222222222222222222222	- 088 1044 +31- 204 431- 204 127 308 127 308 127 308 127 308 127 308 127 308 127 308 127 308 127 308 127 308 100 403- 806- 351- 100 403- 806- 100 403- 806- 100 403- 806- 100 403- 806- 100 100 100 100 100 100 100 10	*13 1 %50 1 %50 1 %50 1 %50 1 %6 1 %6 1 %6 1 %6 1 %6 1 %6 1 %6 1 %6	22222222222222222222222222222222222222	128- 128- 128- 120- 140- 140- 145- 121- 145- 121- 145- 137- 80- 202- 105- 1	100 304 165 304 165 304 165 304 165 304 165 304 165 304 165 304 107 633 107 633 107 633 107 633 107 107 108 107 108 107 108 107 107 108 107 108 107 107 108 107 108 107 107 108 107 108 107 108 107 108 107 107 108 107 107 108 107 107 108 107 107 108 107 107 107 108 107 107 108 107 107 108 107 107 107 108 107 107 108 107 107 107 107 107 107 107 107
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	240 40 40 40 40 40 40 40 40 40 40 40 40 4	216 216 107 107 107 107 107 107 107 107	1	295- 115- 115- 2247- 247- 247- 2	230 280 280 100 100 04 050 100 04 050 100 100 100 100 100 100 100 100 100	1 1 1 1 1 1 1 1 22?2222222222	$\begin{array}{c} 338\\ 335\\ 335\\ 335\\ 335\\ 335\\ 335\\ 335\\$	300 208 208 200 360 351 352 353 353 353 353 353 353 353 353 353	22222222222222222222222222222222222222	574 1327	$\begin{array}{c} 501\\ 9\\ 851\\ 0\\ 3350\\ 0\\ 212\\ 0\\ 25\\ 0\\ 550\\ 168\\ 1550\\ 168\\ 1550\\ 168\\ 1550\\ 10\\ 1550\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 1$	35333333333333333333333333333333333333	951- 153- 368- 3670- 751- 153- 150- 1510- 1510- 1510- 1510- 1510- 1510- 1510- 1500- 12001 4235- 208 531 400- 531- 535- 531- 531- 535- 531- 531- 531- 531- 535- 531- 531- 531- 531- 535- 531- 5	$\begin{smallmatrix} 113\\ 10& 3\\ $

TABLE III (Continued)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	h) そうちょうちょうちょうちょうちょうちょうちょうちょうちょうちょうちょうちょうちょう	7.7 9.5 7.7 9.5 9.5 9	C. 1 11 11 11 11 11 11 11 11 11 11 11 11	L 17 4 4 17 178-1 189-1 189-1 189-1 189-1 189-1 189-1 189-1 189-1 199	P	L 7777778885989888	F. 0-1100 1100 1000 1000 1000 1000 1000 10	E 24111366 111366 111366 111366 111366 111366 111366 111366 111366 111366 111366 1111166 1111166 1111166 111166 111166 111166 111166 111166 11	21 ゆうゆうゆうクアアアアアアアアアアアアアアアアアアアの日日日日日にはしんしんしんしんしんしんしんしんしんしんしんしんしんしんしんしんしんしんしん	Loo- 2120 2120 2120 2120 2120 2120 2120 212	P_21809 0021740 13532 10780 131897 2100 2100 2100 2100 2100 2100 2100 210	<u>L</u> a a a a a a a a a a a a a a a a a a a	$ \begin{array}{c} \mathbf{F}_{0} 0 \\ 1 1 1 1 1 1 1 1$
---	--	---	--	---	---	--------------------	---	---	---	---	---	---	---

^a The asterisk denotes those reflections which were unobserved. The value of F_0 in this case represents the minimum observable F_0 .

Fig. 1.— Coordination about the copper atoms in $C_{\rm s} H_{\rm s} {\rm CuCl}.$ Small spheres are carbon atoms; large spheres are chlorine atoms.

TABLE IV

Equations of Planes in Normal Form and Bond Angles Plane (Cu, Cl, Cl, C, C, C)

-0.3276x + 0.5103y + 0.7952z = 3.122 Å. Dev. from plane (Å.):

-0.092, 0.059, -0.002, -0.065, 0.101Plane (C₁, C₂, C₃, C₅)

-0.0176x + 0.9755y - 0.2194z = 1.943 Å. Dev. from plane (Å.): -0.011, 0.011, -0.005, 0.005Plane (C₄, C₆, C₇)

0.4636x - 0.2184y - 0.8587z = 0.154 Å. Dev. from plane (Å.): -0.004, 0.008, -0.009, 0.004

Angle of (Cu, Cl, Cl', C₁, C₂) with (C₁, C₂, C₃, C₈) = 109.2°

	Angle, deg.	Std. dev., deg.
Cl-Cu-Cl'	106.0	0.1
$Cl'-Cu-(C_1-C_2 \text{ center})$	123.1	0.2
$Cl-Cu-(C_1-C_2 \text{ center})$	130.1	0.2
$C_1 - C_2 - C_3$	125.4	0.8
$C_2 - C_3 - C_4$	126.3	0.7
$C_{8}-C_{4}-C_{5}$	123.2	0.7
$C_4 - C_5 - C_6$	124.6	0.7
$C_{5}-C_{6}-C_{7}$	126.1	0.7
$C_{6}-C_{7}-C_{8}$	124.3	0.7
$C_{7}-C_{8}-C_{1}$	124.7	0.8
$C_8 - C_1 - C_2$	124.6	0.8
Cu-Cl-Cu	108.7	0.1
Angle of (C_1-C_2) with $Cu-(C_1-C_2)$	$_2 \text{ center}) = 88.9$	0

Two other double bonds are located at points which might be described as the apices of a distorted trigonal bipyramidal configuration about Cu. The atoms in the $C_6 = C_6$ bond are 2.76 Å. from the Cu atom and are in the same cyclooctatetraene molecule as the closely coordinated $C_1 = C_2$ bond. The $C_3 = C_4$ bond in a different molecule is still further away from Cu at about 3.5 Å.

It is not possible to determine from the distances alone whether the $C_5 == C_6$ bond is involved in an appreciable interaction with the Cu atom. There is some indication that the C_5 , C_6 atoms cannot approach closer to the Cu atom because a hydrogen attached to C_5 comes into contact with a Cl atom in the -Cu-Clchain. This contact affects the orientation of the whole olefin molecule, so that the plane (C₁, C₂, C₃,

Fig. 2.—Projection of structure of C_8H_8CuCl onto (001). Small circles are carbon atoms; large circles are chlorine atoms.

 C_8) makes an angle of 110° with the (Cu, Cl, Cl', C₁, C₂) plane. An angle of 90° would give the best overlap between the orbital from the Cu atom and the π -molecular oribital of the olefin. Olefin π -orbitals are sufficiently flattened, however, so that fairly large deviations from 90° for this angle should be tolerated. Since the orientation of the olefin molecule is determined principally by the Cu-(C₁=C₂) interaction, the position of the C₅=C₆ bond may be incidental. On the other hand, orbitals are available from Cu to form a bond.

The trigonal configuration about Cu(I) has been previously reported for KCu(CN)2,⁵ and a similar configuration has been found in a complex of norbornadiene with CuCl.⁶ The trigonal (or distorted bipyramidal) arrangement has also been found for Ag(I) in the complex of cyclooctatetraene with AgNO₃.⁷ The structural parallel between C₈H₈CuCl and C₈H₈AgNO₃ is rather striking since the silver and nitrate ions form continuous chains through the crystal, the silver atoms forming rather short bonds to two oxygen atoms (2.36, 2.43 Å.), one from each nitrate group. Again one double bond from the cyclooctatetraene molecule is closely bonded to the Ag atom (2.46, 2.51 Å.) and lies in the same plane as the Ag and O atoms. In the apical directions, one double bond from the same cyclooctatetraene molecule is at 2.8 Å, and one from a different molecule is at 3.2 Å.

Although the distances between carbon atoms cannot be accurately determined in the presence of more effective scatterers such as Cu and Cl when an R value of only 0.10 has been achieved, nevertheless some significant statements may be made. The $C_1==C_2$ bond distance of 1.392 Å. is longer than 1.34 Å. at the 0.1% level of significance (3.3 standard deviations). (Other work on the refinement of norbornadienepalladium chloride indicates that the fact the actual distance may lie between 1.353 and 1.431 Å. should not be disregarded, and the particular numerical value of 1.392 Å. should not be relied on too firmly.^{3,8}) The

- (6) N. C. Baenziger, H. L. Haight, and J. R. Doyle, *Inorg. Chem.*, **3**, 1535 (1964).
- (7) W. N. Lipscomb and F. S. Mathews, J. Phys. Chem., 63, 845 (1959).

⁽⁵⁾ D. T. Cromer, J. Phys. Chem., 61, 1388 (1957).

Vol. 3, No. 11, November, 1964

remaining double bonds are not significantly different from 1.34 Å. The average value of all the single bonds is 1.475 Å., in reasonable agreement with the average value found for cyclooctatetraene by electron diffraction methods, 1.462 Å.⁹ The distances are significantly shorter than the normal single bond distance of 1.54 Å.

(8) N. C. Baenziger, J. R. Doyle, G. F. Richards, and C. L. Carpenter, "Advances in the Chemistry of the Coordination Compounds," The Macmillan Company, New York, N. Y., 1961, p. 131.

1

Acknowledgment.—This research work was supported by a grant from the Army Research Office (Durham), DA-ARO(D)-31-124-G26. The authors are indebted to Dr. H. L. Haight for the preparation of the crystal specimens and to Messrs. Mark and Phillip Richards for the estimates of the intensities.

(9) O. Bastiansen, L. Hedberg, and K. Hedberg, J. Chem. Phys., 27, 1311 (1957).

CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, THE STATE UNIVERSITY OF IOWA, IOWA CITY, IOWA

Metal–Olefin Compounds. VII. The Crystal and Molecular Structure of Cyclo-tetra- μ -chloro-tetrakis[bicyclo[2.2.1]hepta- 2π ,5-dienecopper(I)]

BY N. C. BAENZIGER, H. L. HAIGHT, AND J. R. DOYLE

Received April 27, 1964

A crystal structure determination of the compound formed by the reaction of copper(I) chloride and bicyclo[2.2.1]hepta-2,5-diene (norbornadiene) shows that the complex exists as a tetramer, $(C_{r}H_{s}CuCl)_{4}$, in the solid state with $\overline{4}$ symmetry. The copper and chlorine atoms form an eight-membered tube-shaped ring with one double bond of the olefin coordinated to the copper atom and lying in the plane defined by the copper atom and adjacent chlorine atoms. The copper atom is coordinated to the olefin in an *exo* configuration; one double bond of the olefin is not coordinated. The distorted trigonal planar coordination about copper is similar to that found for potassium dicyanocuprate(I), cyclooctatetraenecopper(I) chloride, and 2-butynecopper(I) chloride.

Introduction

The compound dichloro(norbornadiene)palladium-(II) has been studied crystallographically,^{1,2} and the 1:2 complex of norbornadiene with silver nitrate had been prepared and the structure determination was in progress³ when a method for preparing olefin complexes containing copper(I) chloride was developed.⁴

The preparation of norbornadienecopper(I) chloride, hereafter abbreviated as NBD-CuCl, and the subsequent structure determination was made to add another member to a series in which the olefin was kept the same, but the metal to which it was coordinated was varied. The structure determination reveals an interesting coordination arrangement for copper(I) which is very similar to that reported for 2-butynecopper(I) chloride by Carter and Hughes.⁵ The companion paper⁶ in this series contains a summary of other earlier work and a report on the structure determination of cyclooctatetraenecopper(I) chloride (COT-CuCl).

(2) N. C. Baenziger, J. R. Doyle, G. F. Richards, and C. L. Carpenter, "Advances in the Chemistry of the Coordination Compounds," The Macmillan Company, New York, N. Y., 1961, pp. 131-138.

Experimental

Preparation of Crystals.—Crystals of norbornadienecopper(I) chloride were made by reducing an ethanol solution of copper(II) chloride and the olefin with sulfur dioxide. The crystals which precipitated were separated by filtration and washed with methanol containing a small amount of norbornadiene. The crystals used for X-ray diffraction measurements were mounted in two different ways. For the early work on the structure determination, the crystals were coated with a polystyrene-alkyd copolymer resin immediately after being glued to the glass fiber support. A thin-walled glass capillary was then mounted over the glass fiber and crystal and cemented to the brass pin base. By maintaining the crystal at -10° continuously throughout all the exposures (dry air stream cooled by a Dry Ice-acetone bath) crystal decomposition was retarded. For the measurements made with the G.E. single crystal orienter, an uncoated crystal was mounted in a thin-walled capillary, containing a small amount of norbornadiene, in a drybox, and the capillary was sealed off with a glass seal. Crystals mounted in this fashion did not decompose at room temperature during the approximately 2week period needed to obtain the intensity data. The crystal used to obtain all of the intensity data was a tetragonal rod, 0.17 \times 0.17 \times 0.80 mm., bounded by 1,1,0 faces.

Crystal Data.—The cell dimensions were determined from the settings needed for the single crystal orienter. Norbornadiene-copper(I) chloride has a tetragonal unit cell with $a = 12.27 \pm 0.03$ Å., $c = 9.62 \pm 0.02$ Å. at room temperature. Cell dimensions obtained from precession camera films at -10° are $a = 12.21 \pm 0.05$ Å., $c = 9.58 \pm 0.04$ Å. From precession films, (h0l) through (h6l), and Weissenberg films, (hk0) through (hk5), the systematic extinctions, (hhl) present only when l = 2n, (h00) present only when h = 2n, lead to the unique space group P42₁c.

The early work on the structure used visually estimated film

⁽¹⁾ N. C. Baenziger, J. R. Doyle, and C. L. Carpenter, Acta Cryst., 14, 303 (1961).

⁽³⁾ H. L. Haight, Dissertation, University of Iowa, Feb., 1963.

⁽⁴⁾ H. L. Haight, J. R. Doyle, N. C. Baenziger, and G. F. Richards, Inorg. Chem., 2, 1301 (1963).

⁽⁵⁾ F. L. Carter and E. W. Hughes, Acta Cryst., 10, 801 (1957).

⁽⁶⁾ N. C. Baenziger, G. F. Richards and J. R. Doyle, Inorg. Chem., 3, 1529 (1964).